Mean square error optimal weighting for multitaper cepstrum estimation
نویسنده
چکیده
The aim of this paper is to find a multitaper-based spectrum estimator that is mean square error optimal for cepstrum coefficient estimation. The multitaper spectrum estimator consists of windowed periodograms which are weighted together, where the weights are optimized using the Taylor expansion of the log-spectrum variance and a novel approximation for the log-spectrum bias. A thorough discussion and evaluation are also made for different bias approximations for the log-spectrum of multitaper estimators. The optimized weights are applied together with the sinusoidal tapers as the multitaper estimator. Comparisons of the cepstrum mean square error are made of some known multitaper methods as well as with the parametric autoregressive estimator for simulated speech signals.
منابع مشابه
Optimal Multitaper Wigner Spectrum Estimation of a Class of Locally Stationary Processes Using Hermite Functions
This paper investigates the time-discrete multitapers that give a mean square error optimal Wigner spectrum estimate for a class of locally stationary processes (LSPs). The accuracy in the estimation of the time-variable Wigner spectrum of the LSP is evaluated and compared with other frequently used methods. The optimal multitapers are also approximated by Hermite functions, which is computatio...
متن کاملOptimization of Weighting Factors for Multiple Window Spectrogram of Event-Related Potentials
This paper concerns the mean square error optimal weighting factors for multiple window spectrogram of different stationary and nonstationary processes. It is well known that the choice of multiple windows is important, but here we show that the weighting of the different multiple window spectrograms in the final average is as important to consider and that the equally averaged spectrogram is n...
متن کاملOptimization ofWeighting Factors for MultipleWindow Spectrogram of Event-Related Potentials
This paper concerns the mean square error optimal weighting factors for multiple window spectrogram of different stationary and nonstationary processes. It is well known that the choice of multiple windows is important, but here we show that the weighting of the different multiple window spectrograms in the final average is as important to consider and that the equally averaged spectrogram is n...
متن کاملDiscrete weighted mean square all-pole modeling
The paper presents a new method for all-pole model estimation based on minimization of the weighted mean square error in the sampled spectral domain. Due to discrete nature of the proposed distance measure, emphasis can be put on an arbitrary set of spectral samples what can greatly improve the model accuracy for periodic signals. Weighting can also be applied to improve the fitting in certain ...
متن کاملMultitaper MFCC and PLP features for speaker verification using i-vectors
In this paper we study the performance of the low-variance multi-taper Mel-frequency cepstral coefficient (MFCC) and perceptual linear prediction (PLP) features in a state-ofthe-art i-vector speaker verification system. The MFCC and PLP features are usually computed from a Hamming-windowed periodogram spectrum estimate. Such a singletapered spectrum estimate has large variance, which can be red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013